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Abstract

In this paper, we propose a numerical method, the finite difference heterogeneous multi-scale method (FD-HMM),

for solving multi-scale parabolic problems. Based on the framework introduced in [Commun. Math. Sci. 1 (1) 87], the

numerical method relies on the use of two different schemes for the original equation, at different grid level which allows

to give numerical results at a much lower cost than solving the original equations. We describe the strategy for con-

structing such a method, discuss generalization for cases with time dependency, random correlated coefficients, non-

conservative form and implementation issues. Finally, the new method is illustrated with several test examples.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper is devoted to the numerical solution of partial differential equations with coefficients in-
volving different scales. Direct numerical treatments of these problems are difficult due to the cost required

for resolving the smallest scale. Discrete scheme obtained in this way are often by far too expensive to be

solved directly.

Analytic treatments of these problems lead to so-called homogenized equations in which the multi-scale

problem, depending on small parameters, is replaced by an equation with non-oscillatory coefficients found

as a limit (usually in a weak sense) when the small parameters tend to zero. These analytical techniques have

been studied for many years (see for example [5,6], and the references therein). They can be successful for

several applications, but are limited by restrictive assumptions on the media.
From a numerical point of view, the homogenized equations have to be obtained first and then, one has

to solve the homogenized equations. It is often preferable to handle the original equations without the

intermediate step through homogenization. One reason is that the aforementioned approach eliminates the
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small scales that can be of interest. In classical homogenization, the recovery of the fine scale features is

done by using correctors, but these are of the same complexity as the original problem.

Numerical computation for homogenization problems was first studied by Babuska [4] for elliptic

problems and Engquist [9] for dynamic problems. Babuska proposed for a linear variational homogeni-

zation problem in one dimension to use a finite element method on a macro-scale grid but with modified

basis functions that are obtained from solving the original multi-scale problem with f ¼ 0 as the right-hand

side. With this strategy, the basis functions capture the correct microscopic behavior. These ideas were

extended recently to higher dimensions by Hou et al. [14,15]. The methods based on this approach require a
cost that is comparable to that of solving the original problem on a fine grid.

Another strategy based on finite element methods is that of Schwab, Matache and Babuska [18,19], using

macro- and micro-shape functions on two-scale finite element space. The cost of this method is independent

of the micro-scale e but it is up to now limited to problems with periodic micro-structure. For the analytical

treatment of homogenization equations, two-scale test functions were used by Nguentseng [17], E [7] and

Allaire [3].

Engquist and Runborg [10,11] proposed a method based on multi-resolution analysis with wavelet

projections and approximation of the discrete operator. For a given wavelet space, the discretized operator
originating from the oscillating problem is projected into a coarse subspace.

Neuss et al. [20] proposed a method based on a standard finite element setting and uses a two-grid al-

gorithm for the multigrid iteration. That is, the multigrid iteration start with the original equations (with

the small scales) but the direct resolution is done for the homogenized problem.

These aforementioned techniques seem to be limited to particular classes of problems. In this paper we

propose a new method, the finite difference heterogeneous multi-scale method (FD-HMM), for the nu-

merical solution of parabolic multi-scale equations. This method is based on the framework of the het-

erogeneous multi-scale method (HMM) introduced in [8], a general methodology for the efficient numerical
computations of problems with multiple scales. The goal is to build a method in a way that can be applied

to more general problems than classical homogenization, as for example for problem with time dependent

or random stationary (correlated) coefficients as well as for non-conservative problems.

There are two main components in the finite difference heterogeneous multi-scale method:

• a macroscopic scheme evolved on a coarse grid (the grid of interest) with unknown data recovered from

the solutions of the microscopic model;

• amicroscopic scheme, in which the original equation is solved on a sparse (heterogeneous) spatial domain.

We describe in Section 2.2 the new finite difference HMM method, explain how to overcome
several issues that arise when implementing the numerical method, and give an algorithm for

implementing it. Finally, we give in Section 3 numerical examples to illustrate the performance of the

proposed method.
2. Finite difference and multi-scale problems

In this section, we first recall in Section 2.1 some of the basic theory of homogenization, which is an
important class of problem for our new method. We then describe in Section 2.2 the method, and give

several generalizations. Finally, we establish a consistency result for the method.

2.1. Classical homogenization of parabolic problems

For now, we consider the following multi-scale parabolic equation:

oue

ot
¼ r � A

x
e

� �
rue

� �
in ð0; T Þ � X; ð1Þ
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ue ¼ 0 on ð0; T Þ � oX; ð2Þ
ueð0; xÞ ¼ geðxÞ 2 L2ðXÞ; ð3Þ

where ue ¼ ueðt; xÞ, x 2 X � Rd is a bounded domain, and AeðxÞ ¼ Aðx=eÞ ¼ ðAijð�ÞÞdi;j¼1 is real with

Aijð�Þ 2 L1ðRdÞ, uniformly elliptic, bounded and periodic in each of its spatial direction, i.e.,

A
x
e

� �
n; n

� �
P ajnj2; A

x
e

� �
n

��� ���6 bjnj with a; b > 0; ð4Þ
Aijðy1 þ l1; . . . ; yd þ ldÞ ¼ Aijðy1; . . . ; ydÞ; ð5Þ

where we set yi ¼ xi=e and Aðx=eÞ ¼ AðyÞ. The functions AijðyÞ will be referred as y-periodic functions. To

simplify the notation we suppose in the sequel that li ¼ 1.

The variational problem associated with (1)–(3) admits a unique solution ue 2 L2ðð0; T Þ;H 1
0 ðXÞÞ and

oue=ot 2 L2ðð0; T Þ;H�1ðXÞÞ. If ue and oue=ot are in the aforementioned spaces, then ue is almost everywhere

equal to a continuous function from ½0; T � ! L2ðXÞ so that the initial values (3) for ue make sense (see [16]

for details).

If we apply a standard finite difference scheme to Eq. (1) the discretization should satisfy Dx < e if we
want to resolve the e-scale, which can be prohibitive if e is small.

Classical homogenization theory tells us that (see [5, Chapter.1.2; 6, Chapter 11])

ue * u0 weakly in L2 ð0; T Þ;H 1
0

� �
; ð6Þ

where u0 is the solution of the so-called homogenized problem

ou0

ot
¼ r � A0ru0

� �
in ð0; T Þ � X; ð7Þ
u0 ¼ 0 on ð0; T Þ � oX;
u0ð0; xÞ ¼ g0ðxÞ 2 L2ðXÞ;

where we assume that ge * g0ðxÞ weakly in 2 L2ðXÞ, and A0 is a constant matrix given by

A0
ij ¼

Z
Y

AijðyÞ
 

þ
Xd
k¼1

AikðyÞ
ovj

oyk
ðyÞ
!
dy; ð8Þ

where Y ¼ ð0; 1Þd (we suppose AðyÞ is 1-periodic in y1; . . . ; yd) and vjðyÞ are given by the solution of the cell

problems

Xd
i¼1

o

oyi

Xd
k¼1

Aik
ovj

oyk

 !
¼ �

Xd
i¼1

o

oyi
Aij; j ¼ 1; . . . ; d;
Z
Y
vjðyÞ dy ¼ 0: ð9Þ
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This gives in variational formZ
Y
rvjArv dy ¼ �

Z
Y
ðAejÞTrv dy 8v 2 W 1

perðY Þ; j ¼ 1; . . . ; d; ð10Þ

where ðejÞdj¼1 is the canonical basis of R
d and W 1

perðY Þ ¼ fv 2 H 1
perðY Þ;

R
Y v dx ¼ 0g, where H 1

perðY Þ is defined
as the closure of C1

perðY Þ (the subset of C1ðRdÞ of 1-periodic functions) To obtain Eq. (8) we make the

following ansatz for ue:

ueðt; xÞ ¼ u0ðt; xÞ þ eu1 t; x;
x
e

� �
þ e2u2 t; x;

x
e

� �
þ � � � ; ð11Þ

where the functions ujðt; x; yÞ are periodic in the variable y for any t and x (see for example [5, Chapter 1]).

The formal procedure is then to insert (11) in (1) and to compare the power of e. We find that u0ðt; xÞ
satisfies Eq. (7) and u1 is given by

u1ðt; x; yÞ ¼
Xd
j¼1

vjðyÞ o

oxj
u0ðt; xÞ; ð12Þ

where vðyÞ is given by (9). For the flux defined by peðt; xÞ ¼ Aðx=eÞrue; typical convergence result is (see [5])

peðt; xÞ ! A0ru0 weakly in ðL2ðð0; T Þ;XÞÞd : ð13Þ
Remark 1. The classical homogenization theory still applies for non-uniformly oscillating coefficients

Aijðx; x=eÞ, but then the cell problem depends on the location x, and A0 becomes space dependent A0ðxÞ.

2.2. Finite difference HMM

To handle multi-scale problems with finite difference methods, we propose a ‘‘heterogeneous’’ discret-

ization which cares about the fine scale only on small representative region of size e of the spatial domain. In

the following we describe in detail the algorithm sketched below, extend it to more general situation such as
non-conservative problems, random correlated coefficients and time dependent coefficients. Finally, we give

consistency results for the proposed method.

Let us first give a short overview of the strategy before giving a more detailed description. We consider

the domain X ¼ ½0; 1� � ½0; 1� (for simplicity) of R2 and discretize it with a coarse equidistant mesh ðx1i; x2jÞ,
i; j ¼ 1; . . . ;N , for which Dx ¼ x1iþ1 � x1i ¼ x2jþ1 � x2j is much larger than e.

The idea is to evolve a macroscopic model for the flux form of the parabolic equations (1)–(3)

oU
ot

¼ r � P ; ð14Þ

on a coarse grid with large time step, where P ðt; x1i; x2jÞ ¼ ðP1; P2Þ is estimated by solving the original

equation around ðx1i; x2jÞ in small representative regions. Notice that a macroscopic model is known to exist

from the homogenization theory. The goal is to estimate it by considering only the micro-scale equations

(1)–(3).

Suppose that at time tk we have a numerical solution of Eq. (14) on the coarse grid ðx1i; x2jÞ ¼ xij, denoted
by Uk

ij: To find the coarse solution Ukþ1
ij at time tkþ1 we proceed in three steps:

(1) For each xij, solve Eqs. (1)–(3) on four e-cells I ei�1=2;j; I
e
i;j�1=2 defined in (15) (see also Fig. 1), with corre-

sponding solution u obtained by a finite difference method on fine spacial grid (which resolves the e scale)
for a small time step d. The boundary conditions are such that uðt; xÞ � UkðxÞ is e-periodic, and the initial

conditions are given by UkðxÞ, a linear reconstruction of the coarse solution Uk (on each e-cell).



Fig. 1. e-Cell (black boxes) at the coarse point ðx1i; x2jÞ.
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(2) Compute

rPij ¼
Pk
iþ1=2;j � Pk

i�1=2;j þ Pk
i;jþ1=2 � Pk

i;j�1=2

Dx
¼ FijðUkÞ;
where Pk
iþ1=2;j and Pk

i�1=2;j are averages of the micro-scale flux computed with the numerical solution u
given by step 1 over I eiþ1=2;j and I ei�1=2;j, respectively. Similarly, Pk

i;jþ1=2 and Pk
i;j�1=2 are the average of the

micro-scale flux computed with the numerical solution u over I ei;jþ1=2 and I ei;j�1=2, respectively.

(3) Evolve the equation oUk=ot ¼ F ðUkÞ on the coarse mesh ðx1i; x2jÞ with a large time step Dt.

Standard finite difference methods would consists in discretizing the whole domain with the microscopic

model and evolve the equations on it. Thus it would produce a large number of equations (if e is small

compared to X) difficult to solve numerically. For the proposed finite difference heterogeneous multi-scale

method (FD-HMM), based on the aforementioned coupling, the main numerical work will consist in

solving the microscopic model. But this is only done on small sub-domain of the original domain. Since the

microscopic cell problems are independent, they can be solved in parallel, which is another advantage of

that method. Notice finally that for the FD-HMM the number of equations for solving the cell problems
does not depend on e, since the e-domain decreases if e decreases.

We describe now this algorithm in more detail. To simplify the notation, we will usually skip the upper

index corresponding to the time when it is not relevant.

Step (1) Cell problem

Let us define d� ¼ ðDx� eÞ=2; dþ ¼ ðDxþ eÞ=2 and four e-cells around each point ðx1i; x2jÞ:

I ei�1=2;j ¼ ½x1i � d�; x1i � dþ� � ½x2j � e=2; x2j þ e=2�;
I ei;j�1=2 ¼ ½x1i � e=2; x1i þ e=2� � ½x2j � d�; x2j � dþ�:

ð15Þ

We will solve the original equation on a small grid which resolve the e scale, i.e., we resolve the e-scale on a

e-domain. The small grid is defined by

ðk; lÞ ¼ ðnk; nlÞ; k; l ¼ 0; . . . ; s; where nm ¼ Dx� e
2

þ mDn; ð16Þ

and where Dn ¼ e=s, and s is an integer chosen so that Dn resolves the e-scale.
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In the sequel we denote I e ¼ I ei�1=2;j�1=2 a cell given by (15) and we will skip the dependency on the index

i�1=2;j�1=2 if no confusion can occur. On each such cell we discretize (1)–(3) by the method of line and obtain

the semi-discrete equation

d

dt
uk;l ¼

1

ðDnÞ2
FklðtÞ k; l;¼ 1; . . . ; s; ð17Þ

where Fkl is a finite difference discretization of r � Aeruðx1k; x1lð ÞÞ (for example the 5-point stencil provided

Ae is diagonal, the 9-point stencil otherwise).

To start the evolution with the cell problems, we need initial values and boundary conditions which are

not known for the cell problems.

(i) Reconstruction for initial values.We define initial values for the cell problems by a reconstruction from

the values on the coarse grid, Uij whose values are given from the previous step or from the initial values.
The simplest reconstruction is a linear one on each cell. For example for the cell I ei�1=2;j,

ukl ¼ Ui�1;j þ nl
Ui;j � Ui�1;j

Dx
; l ¼ 0; . . . ; s; ð18Þ

where k ¼ 0; . . . ; s; and nl is defined in (16). We will also consider Uðnm; nnÞ for the same reconstruction,
with ðnm; nnÞ defined by (16) (but on ½xi�1; xi�, where m; n can be > s and also <0).

(ii) Boundary conditions.Next, we need boundary conditions for the cell problems. The natural boundary

conditions to recover the macroscopic input data from the microscopic computation are analogous to the

cell problem of the homogenization problem (see Section 2.1). This will be made clear in Section 2.3. We

will use the following boundary conditions for the micro-scale solver:

uk;�1 ¼ uk;s�1 þ Uðnk; n�1Þ � Uðnk; ns�1Þ; k ¼ 1; . . . ; s;

usþ1;l ¼ u1;l þ Uðnsþ1; nlÞ � Uðn1; nlÞ; l ¼ 1; . . . ; s;
ð19Þ

with similar formulas for u�1l and uk;sþ1l ¼ 0; . . . ; s and where Uðnk; nlÞ denotes the linear reconstruction

(18) for the the values Uij on the coarse grid.

Another possibility would be to consider a discrete version of
R
Ie ru dn ¼

R
Ie rU dn; which is a weaker

form than (19).

(ii) Exact cell problem. In the sequel we will also also denote by (see also (43))

ûueðt þ d; nk; nlÞ ð20Þ

the solution of Eqs. (1)–(3) at time t þ d over the cell I e with linear initial conditions given by the recon-

struction (18) and boundary conditions such that ûue � U is e-periodic (similar to 19). By standard error
estimates for semi-discrete approximations we have

jûueðt; nk; nlÞ � uklðtÞj6CðDnÞ2: ð21Þ

Step (2) Flux computation

For the flux computation, a point-wise flux approximation peðt; x1i; x2jÞ ’ Aeðx1i; x2jÞ rnuij may not work

for dimension higher than one (rn denotes the finite difference approximation of the gradient). An example
is given in [8, Section 6.3] which shows that the flux defined in this way may not converge to the flux of the

homogenized equation for e ! 0. The new idea here, suggested by Lemma 3 given in Section 2.3, is to

compute an average flux over a e-cell. For each cell I e ¼ I ei�1=2;j�1=2 we will compute an approximation of

P̂P ¼ 1

jI ej

Z
Ie
Aðn=eÞrûueðt þ d; nÞ dn; ð22Þ
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where ûue is the solution defined in (20). Thus, having computed an approximation uk;l of ûueðt þ d; n1k; n2lÞ
in each cell I ei�1=2;j�1=2, i; j ¼ 1; . . . ;N , by step 1, we compute a discrete version of (22) written for the cell

I ei�1=2;j

Pi�1=2;j ¼
ðDnÞ2

e2
Xs
k;l¼1

A11ðnkþ1=2; nlÞ
ukþ1;l � uk;l

Dn

�
þ A12ðnk; nlþ1=2Þ

uk;lþ1 � uk;l
Dn

�
; ð23Þ

and similarly for the other quantities P ¼ Pi�1=2;j�1=2 corresponding to the cells I ei�1=2;j�1=2.

(i) Flux equilibrium. To compute the average (23), we have to evolve the original equation (14) on the e-
domain for a micro-time step d. By Lemma 3 we know that

P̂P ¼ 1

jI ej

Z
Ie
Aðn=eÞrûueðt þ d; nÞ dn ! A0ru0ðt þ d; �nnÞ; e ! 0; ð24Þ

where �nn is the center of the cell I e, A0 is the homogenized matrix given by (8) and u0 is the solution of (7).

The solution of the homogenized equation (7) has a steady-state flux A0ru0ðt; xÞ ¼ CðxÞ, for linear initial
values and the periodic boundary conditions (19). Thus by Eq. (24), P̂P is nearly constant for small e. But the
reconstructed initial values (and the boundary conditions) can introduce transient before the computed flux

P approaches a quasi-stationary state (see the numerical experiments in Section 3). The micro-time d should
be chosen so that the micro-solution reaches a quasi-equilibrium. It is discussed in [8] that (for one-di-

mensional problems) the ‘‘relaxation time’’ is of order Oðe2Þ.
(ii) Micro-time evolution. To reach this quasi-equilibrium state, we evolve the ODE (17) with a Runge–

Kutta method over small time steps dt, from Dt to Dt þ d, where d ¼ adt. The value uDtþd
kl ’ u�ðDt þ d; . . .Þ

will be used to approximate the flux on I e at time Dt. That is, d does not contribute to the time evolution (we

should have d < Dt).
The estimation of d can be implemented in an automatic way. At the first evaluation of the microscopic

equations we estimate h by finding the first a0 such that

jP ðt þ ða0 þ 1ÞdtÞ � Pðt þ a0dtÞj6 tol ð25Þ

for a given value of tol, and we choose d ¼ a0dt.
Then the numerical solution of (17) denoted by utþd

kl will introduce a time error, which for the the simplest

Euler method is of order OðdtÞ (after a0 steps). And the the estimate (21) becomes for the fully discrete

scheme

jûuðt þ d; nk; nlÞ � utþd
kl j6Cðdt þ ðDnÞ2Þ: ð26Þ

Step (3) Time evolution on the coarse grid

The time evolution on the macroscopic grid is now done via the approximation

dUij

dt
ðtÞ ¼ Piþ1=2;j � Pi�1=2;j þ Pi;jþ1=2 � Pi;j�1=2

Dx
¼ Fijðt;UÞ; i; j ¼ 1; . . . ;N ; ð27Þ

where Pi�1=2;j�1=2 is given by (23). Notice that Eq. (27) can be written in the form of an autonomous ordinary

differential equation

dU
dt

ðtÞ ¼ rP ¼ F ðUðtÞÞ; F : RN2 ! RN2

; ð28Þ

where F is defined by (27). Notice that F is continuous (differentiable) if the coefficients Ae
ijðxÞ of (1) are

smooth enough. Indeed, F is a composition of continuous (differentiable) maps
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F : RN2������!
reconstruction

Rs2�2NðNþ1Þ������!
ODE solution

Rs2�2NðNþ1Þ ������!
flux estimation

RN2

:

Time evolution with Runge–Kutta methods. The simplest fully discrete scheme which evolves the coarse

solution from time step tk to tkþ1 ¼ tk þ Dt is given by the Euler method

Ukþ1
ij ¼ Uk

ij þ Dt � F k
ij ; ð29Þ

where F k
ij ¼ FijðUkÞ: To implement a higher order m-stage explicit Runge–Kutta method, we have to

compute successively the functions

Ki ¼ F Uk

 
þ
Xi�1

j¼1

aijKj

!
; i ¼ 1; . . . ;m; ð30Þ

at intermediate stages Ki, where K1 ¼ F ðUkÞ (see [12, Chapter 2] for details). For each evaluation of the

intermediate stages Ki, we need to evaluate the function F with the algorithm explained above.

2.2.1. Generalization

In the following, we show that the same ideas as explained above apply, with some modifications, to

more general situations as non-conservative problems, random stationary correlated coefficients. They also

apply readily for time dependent coefficients.

2.2.2. Non-conservative problems

Consider for example

oue

ot
¼
X
i;j

aij x;
x
e

� � o2ue

ox1 ox2
ðx; tÞ; ð31Þ

where x ¼ ðx1; x2Þ. We can think of the macro-scale model, the homogenized equation, abstractly as

oU
ot

¼ F ðUÞ; ð32Þ

where F is some unknown linear operator. For the macro-scale scheme, we choose an ODE solver, for

example the Euler method

Ukþ1
ij ¼ Uk

ij þ DtFijðUkÞ; ð33Þ

where FijðUkÞ is an approximation to F ðUkÞ at the ði; jÞth grid point xj.
Our next task is to estimate F ðUkÞ in order to give an expression for FijðUkÞ. This can be done as follows.

Step (1) Cell problem. Reconstruction: from fUk
ijg, the known numerical solution at time step tk, re-

construct a piecewise quadratic polynomial UkðxÞ, such that (written here for the x1 direction)

UkðxijÞ ¼ Uk
ij;

oUk

ox
ðxijÞ ¼

Uk
iþ1;j � Uk

i�1;j

2Dx
; ð34Þ
o2Uk

ox2
ðxijÞ ¼

Uk
iþ1;j þ�2Uk

ij þ Uk
i�1;j

Dx2
: ð35Þ

Solve (31) on the domain I e ¼ xij þ eI , where I ¼ ½�1=2; 1=2� � ½�1=2; 1=2�, with initial condition

uðx; tkÞ ¼ UkðxÞ, and boundary condition so that uðx; tÞ � UkðxÞ is periodic with period eI .
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Step (2) Force computation. Compute a discrete version of

FijðUkÞ ¼ 1

jI ej

Z
Ie

X
k;l

a x;
x
e

� � o2ue

ox1 ox2
ðx; tk þ dÞ dx; ð36Þ

for suitably chosen d, where u is the solution obtained at Step 2 and where jI ej denotes the measure of I e. a
should be chosen such that FijðUkÞ reaches a quasi-stationary value (see subsection Micro-time evolution).

Step (3) Time evolution on the coarse grid. Evolve (33) on the coarse mesh with a large time step.

2.2.3. Random coefficient

The FD-HMM method can be applied for some problems with random coefficients. For example in the

case where the random coefficients aeðxÞ are known to have a correlation length e. Step 1 of themethod applies

without modification, either as described above (non-conservative equation) or as described previously.
For Step 2, the e-cell, whose size was given in the periodic case by the length of the period is now given by

the correlation length. Unlike the periodic case, one should consider the microscopic solver on domains

larger than one cell in order to have enough information from the microscopic equations (see numerical

example in Section 3).

Finally Step 3, the evolution of the ODE on the coarse mesh can be done similarly as explained above.

2.2.4. Time dependent coefficients

The FD-HMM applies readily for time dependent coefficients Aeðx; tÞ, in conservative or non-conser-

vative problems and also in the case of random coefficients. In these situations, at each coarse step, the

algorithm for computing the flux or the forces has to be applied.

2.2.5. Estimation of the macro-scale coefficients

In some situation, for example for time independent coefficients, it is only necessary to apply the mi-

croscopic solver once. Indeed, knowing Pij (an approximation of the flux A0ru0 of the homogenized

equation) and uij on a cell (after applying the microscopic solver), we can estimate the coefficients ðAijÞ of
the unknown macroscopic model

dU
dt

ðtÞ ¼ rP ¼ r � ðArUÞ: ð37Þ

For example we obtain A11;A12 by solving a linear system for two different cells around ðx1i; x2jÞ,

P1 ¼ A11o1U þ A12o2U on I eiþ1=2;j; ð38Þ
~PP1 ¼ A11o1 ~UU þ A12o2 ~UU on I ei�1=2;j; ð39Þ

where P ¼ ðP1; P2Þ, ~PP ¼ ð ~PP1; ~PP2Þ are the computed flux with the microscopic solver on the cell I eiþ1=2;j and

I ei�1=2;j, respectively, and U is the macroscopic available solution. Similarly we get the entries A21;A22.

2.2.6. Recover the small-scale information

It can sometimes be of interest to recover information about the small scale at some points outside the

coarse mesh.

Let Dx ¼ xi;j � xi�1;j be the size length of the coarse grid mesh. Let ukl0 be the solution of Eq. (17) on the
cell xi�1=2;j þ e � ½�1=2; 1=2�; where the index l0 corresponds to the index of the middle of the cell with respect

to the x2 axis. We extend periodically the obtained micro-scale values ukl0 on ½x1;i�1; x2j� as

~uuml0 ¼ Uðnm; nl0Þ þ ðukm;l0 � Uðnkm ; nl0ÞÞ;



A. Abdulle, W. E / Journal of Computational Physics 191 (2003) 18–39 27
where for m 2 Z, km 2 f0; . . . ; sg is given by km � mðsþ 1Þ and UðnÞ is given by the reconstruction defined

in (18).

2.2.7. Summary of the algorithm

We summarize our algorithm for the solution of a parabolic multi-scale equations on a domain X: define
a coarse discretization ðx1i; x2jÞ; i; j ¼ 1; . . . ;N of the domain X; and 2NðN þ 1Þ cells I e (see Fig. 1) with

length and width of size comparable to e; discretized with ðn1l; n2mÞ; l;m ¼ 1; . . . ; s.
(1) Solve the original equation on each cell I e; with initial solution given by the piecewise linear reconstruc-

tion (18) in case of conservative problem and piecewise quadratic reconstruction (34) in case of non-

conservative problem, with boundary conditions (19).

(2) Compute the flux approximation (23) or the force approximation (36).

(3) Evolve the ODE of the macroscopic model (28) or (32) on the coarse mesh ðx1i; x2jÞ; i; j ¼ 1; . . . ;N :
The first saving in computation time in the FD-HMM strategy is achieved by reducing the computation

of the micro-scale on micro-domain (step 1). Notice that each e-cell computation is independent, so that the

computation of the e-cell problems can be done in parallel. Since the macro computation (step 3) is very fast

the parallel implementation can highly speed up the computation time.

2.3. Consistency results

The error between the results given by the FD-HMM and the homogenized equation several parts:

• the error between the estimated flux and the homogenized flux;

• the error given by the macro-scale solver.

We will, as suggested in [8], compare the solution given by the FD-HMM method (see (29))

Ukþ1
ij ¼ Uk

ij þ Dt � F k
ij ; ð40Þ

with a macroscopic scheme

�UUkþ1
ij ¼ �UUk

ij þ Dt � �FF k
ij ; ð41Þ

chosen such that the micro-scale solver in the algorithm (on the e-cell) is replaced by the solution of the
homogenized equations, on the same e-cell with the same boundary conditions (19). As in (27), we write

�FF k
ij ¼

�PPk
iþ1=2;j � �PPk

i�1=2;j þ �PPk
i;jþ1=2 � �PPk

i;j�1=2

Dx
; ð42Þ

where �PPij will be explicitly given (see 44).

The analysis given in [8] is done for the parabolic case in one dimension using a different approximation

for the flux as in the FD-HMM and cannot be generalized to higher dimension. We discuss here the case of

higher dimension, with the new flux approximation (22).

Let us write

Uk ¼ ðU11; . . . ;U1N ; . . . ;UN1; . . . ;UNN ÞT 2 RN2

:

For the flux

Pi�1=2;j�1=2ðUkÞ and �PPi�1=2;j�1=2ð �UUkÞ;

given by (27) and (42), respectively. In the sequel we will skip the dependency toward Uk and denote the

time dependency tk as a superscript Pk; �PPk. We will also denote by C a generic constant whose value can
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change at any occurrence but depends only on the quantities which are indicated explicitly. By (27) and (42)

it is sufficient to estimate jPk
i�1=2;j�1=2 � �PPk

i�1=2;j�1=2j:
Let tk be fixed and Uk be the solution given by the FD-HMM at time tk; and UkðxÞ be the piecewise

linear reconstruction of this solution given by (18). Recall that in (20) we have defined ûue the solution

of

oûue

ot ¼ r � ðAerueÞ; ðt; xÞ 2 ðtk; tk þ dÞ � I ei�1=2;j�1=2;

ûue � UkðxÞ; e-periodic on I ei�1=2;j�1=2;

ûuðtk; xÞ ¼ UkðxÞ;

8>><
>>: ð43Þ

where I ei�1=2;j�1=2 is a e-cell defined in (15) and d is the relaxation time (see (25)). To simplify we will skip the

dependency on the index i�1=2;j�1=2 when no confusion can occur.

Let �UUkðt; xÞ be the solution of the above problem but with Ae replaced by A0 the homogenized matrix

associated to (1)–(3). Then for these linear initial conditions, �UUkðt; xÞ ¼ UkðxÞ. Thus if we define
�PP1ðx1i; x2jÞ; �PP2ðx1i; x2jÞT ¼ A0rUkðx1i; x2jÞ, the flux of Eq. (42) is given by

�PPk
i�1=2;j ¼ �PP1ðx1i � Dx=2; x2jÞ and �PPk

i;j�1=2 ¼ �PP2ðx1i; x2j � Dx=2Þ: ð44Þ

To be well defined, the scheme (42) needs to be stable. If we transform the constant matrix A0 in diagonal

form (recall that A0 is symmetric), the scheme (42) can be written as

�UUkþ1 ¼ �UUk þ Dt

ðDxÞ2
S �UUk; ð45Þ

where S is a N 2 � N 2 matrix. The above scheme is stable if for all eigenvalues kl of S, we have

Dt
kl

ðDxÞ2

����� þ 1

�����6 1:

Let us define the space of functions

W ðI eÞ ¼ v 2 H 1
perðI eÞ;

Z
Ie
v dx

	
¼ 0



;

where H 1
perðI eÞ is defined as the closure of C1

perðI eÞ (the subset of C1ðR2Þ of e-periodic functions) for the H 1

norm. By the change of variable y ¼ x=e we have corresponding spaces over the domain Y ¼ ð0; 1Þ2 for 1-
periodic functions.

Multiplying (43) by test functions in W ðI eÞ and integrating by part we obtain that ûue satisfies at t þ d
8z 2 W ðI eÞ

Bðûue; zÞ ¼
Z
Ie
Aðx=eÞrûueðtk þ d; xÞrzðxÞ dx ¼ �

Z
Ie

oûueðtk þ d; xÞ
ot

zðxÞ dx: ð46Þ

In the sequel we set hðxÞ ¼ oûueðtk þ d; xÞ=ot; and we skip the dependence on t. We will call d the relaxation

time. It is the time (if it exists) for which ue reaches a quasi-stationary value. Notice that ûue � Uk is periodic
on I e and we set

ûue ¼ Uk þ ŵw and w ¼ ŵw

�
�
Z
Ie
ŵw dx

�
2 W ðI eÞ: ð47Þ
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Assumption. In the sequel we assume that

ðAÞ hð�Þ :¼ oûue

ot
ðt þ d; �Þ 2 L1ðI eÞ and khkL1ðIeÞ ¼ �gd 6 e;

where gd depends on the relaxation time d. If ue reaches a quasi-stationary value for t ! tk þ d then gd ! 0.

Numerical experiments (see Fig. 2 in Section 3) indicates that the relaxation time is of order e2. This was
discussed in [8] for the one dimension case.

We next define another function ~uue which will be used in the following analysis. Let ~uue 2 Uk þ W ðI eÞ be
the solution of

Bð~uue; zÞ ¼
Z
Ie
Aðx=eÞr~uuerz dx ¼ 0 8z 2 W ðI eÞ: ð48Þ

This can be reformulated as follows: find vj 2 W ðI eÞ; j ¼ 1; 2 such that (see (10))Z
Ie
Aðx=eÞr vj

oUk

oxj

� �
rz dx ¼ �

Z
Ie
Aðx=eÞ ej

oUk

oxj

� �
rz dx 8z 2 W ðI eÞ: ð49Þ

Using (49) a direct calculation shows that ~uue ¼ UkðxÞ þ e
P2

j¼1 v
jðx=eÞðoUkðxÞ=oxjÞ. Then, integrating

Aðx=eÞr~uue and using (8) we find

1

jI ej

Z
Ie
Aer~uue dx ¼ A0rUk; ð50Þ

where A0 is the constant matrix given by (8).

To estimate jPk
i�1=2;j�1=2 � �PPk

i�1=2;j�1=2j we start with the following lemma.

Lemma 2. Assume assumption (A) holds. Then we have

kûue � ~uuekH1ðIeÞ 6C
ffiffiffiffiffiffiffi
jI ej

p
e;

where ûue, ~uue are given by (46) and (48), respectively, and jI ej denotes the measure of I e.

Proof. Let xi 2 I e. We have

akûue � ~uuek2H1ðIeÞ 6Bðûue � ~uue; ûue � ~uueÞ ¼ Bðûue; ûue � ~uueÞ � Bð~uue; ûue � ~uueÞ ¼ Bðûue; ŵw� vÞ

¼
Z
Ie
hðxÞðŵw� vÞdx6

Z
Ie
jhðxÞj2 dx

� �1=2 Z
Ie
jðŵw

�
� vÞj2dx

�1=2

6

ffiffiffiffiffiffiffi
jI ej

p
ekûue � ~uuekH1ðIeÞ;

where k kH1ðIeÞ denotes the usual norm on the Sobolev space H 1ðI eÞ and where we have used assumption (A).

We have also used that rðûue � ~uueÞ ¼ rðw� vÞ and thus Bð~uue; ûue � ~uueÞ ¼ 0 from (48). Then dividing by

kûue � ~uuekH1ðIeÞ gives the result. �

In the next lemma we estimate the difference between the flux given by the HMM scheme with the flux of

the macro scheme given by (42).

Lemma 3. Assume assumption (A) holds. Then we have

1

I e

Z
Ie
Aerûue dx

����� � A0rUk

�
i

����6Ce; ð51Þ

where i ¼ 1; 2 denotes the coordinate of the flux.
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Proof. We define w ¼ ûue � ~uue: Using (50) and Lemma 2 we obtain

1

jI ej

Z
Ie
Aerûue dx

����� � A0rUk

�
i

���� ¼ 1

jI ej

Z
Ie
A

x
e

� �
rw dx

� �
i

����
����

¼ 1

jI ej

Z
Ie

X
j

Aij
x
e

� � ow
oxj

dx

 !
i

�����
�����

6
1

jI ej

Z
Ie

X
j

Aij
x
e

� ���� ���2 dx
 !1=2 Z

Ie

X
j

ow
oxj

����
����2 dx

 !1=2

6
1

jI ej

Z
Ie
max
x;i;j

Aij
x
e

� ���� ���2 dx� �1=2

krwkL2ðIeÞ

6C
1ffiffiffiffiffiffiffi
jI ej

p krðûue � ~uueÞkL2ðIeÞ 6C
1ffiffiffiffiffiffiffi
jI ej

p kûue � ~uuekH1ðIeÞ 6Ce; ð52Þ

where we have used Lemma 2 in the last inequality. �

We will now estimate the difference between Ukþ1 and �UUkþ1: Let us define

Pk
1 ðx1i�1=2; x2jÞ ¼

1

jI ej

Z
Ie
i�1=2;j

Aerûuedx

 !
1

;

Pk
2 ðx1i; x2j�1=2Þ ¼

1

jI ej

Z
Ie
i;j�1=2

Aerûuedx

 !
2

;

and

Pk
i�1=2;j ¼ Pk

1 ðx1i � Dx=2; x2jÞ and Pk
i;j�1=2 ¼ Pk

2 ðx1i; x2j � Dx=2Þ: ð53Þ

The flux of the FD-HMM method is the discrete version of (53) (see 22). We can use standard estimates for

the error between the true solution and the numerical solution of problem (43), since for the flux ap-

proximation on the e-cell we resolve the small-scale (see also the estimates (21) and (26)). We suppose in the

sequel that the macro solution Uk
ij is computed with fluxes Pk

i�1=2;j�1=2 given by (53).

Theorem 4. Assume that assumption (A) hold, that U 0
ij ¼ �UU 0

ij and that the scheme (41) is stable. Assume also
that Ukþ1

ij is obtained with fluxes Pk
i�1=2;j�1=2 given by (53) for k ¼ 1; . . . ; n. Then we have

jUn
ij � �UUn

ijj6
C
Dx

T e; ð54Þ

where T ¼ nDt.

Proof. To estimate the difference between (40) and (41) we have to estimate the difference

jPk
i�1=2;j�1=2 � �PPk

i�1=2;j�1=2j: Using Lemmas 2 and 3 we have

jPk
i�1=2;j�1=2 � �PPk

i�1=2;j�1=2j6Cke;
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where Ck is given in Lemma 2. Thus jF k
ij � �FF k

ij j6Cke=Dx: If we define C ¼ maxj6 n Cj; we obtain for the

difference the schemes (40) and (41)

jUkþ1
ij � �UUkþ1

ij j6 C
Dx

eDt þ jUk
ij � �UUk

ijj;

and by induction

jUn
ij � �UUn

ijj6
C
Dx

T e;

where T ¼ nDt. �

This result shows that the FD-HMM is consistent (under the hypothesis (A)) with the macro-scale

scheme obtained by using the homogenized solution for the micro-solver.

In Section 3 we will give numerical results which show the dependence on e and on the space discreti-

zation of the error between the FD-HMM and the homogenized solutions.
3. Numerical experiments

In this section, we discuss the application of the proposed algorithm at several examples.

3.1. Implementation

The algorithm of Section 2.2 has been implemented in a FORTRAN code. Since we are interested here

to investigate the algorithm, we implemented a simple scheme for the macroscopic equation, that is the

Euler forward method. It can be generalized to higher order methods. We also for the same reasons did our

test with constant step size. For the microscopic solver, there are some situations (two dimensions, very
small e) where even for a very short time and a small domain it is advantageous to use a method with more

stability (the eigenvalues of the Jacobian increase quadratically with the mesh size). If we want to keep

explicit methods, then Chebyshev type methods (see [1,2] and also [13]) are indicated. They are explicit

Runge–Kutta methods with extended stability regions along the negative real axis, suitable for the time

integration of (space) discretized parabolic equations.

Comparison. Because it is difficult to construct interesting multi-scale problems with an exact solution, we

will compare the result obtained by the FD-HMM with a computed reference solution which resolves the

small scale. The Chebyshev method ROCK4 (see [1]) has been used for computing reference solutions via
scale resolution. We will often refer to this solution as the ‘‘exact’’ solution. In one dimension (for the period

case, where the oscillating coefficient is time independent), the homogenized equation is easy to compute. In

this case, we will compare our obtained result with the reference and the homogenized solutions.

As a measure for the error we take the relative Euclidean norm and the maximum norm

err2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Ui � UðxiÞ
UðxiÞ

� �2

vuut ; err1 ¼ max
i¼1;...;N

jUi � UðxiÞj; ð55Þ

respectively, where UðxiÞ denotes the reference solution (or the homogenized) solution projected on the

coarse mesh.

For all computations with mesh refinement, we did a projection on the coarsest grid and compute the

error on that grid (usually N ¼ 9 for one dimension and N ¼ 81 for two dimensions).



Fig. 2. The average flux P ðtÞ ¼
Ps

i¼1 a
eðxiÞðd=dxÞuðt; xiÞ for the first e cell.
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3.2. Example 1: periodic coefficient

Consider the following model problem in one dimension

utðt; xÞ ¼
d

dx
aeðxÞ d

dx
ueðt; xÞ

� �
; ð56Þ

where aeðxÞ ¼ 1:1þ sinð2px=eÞ, e ¼ 10�2, with initial condition

uð0; xÞ ¼ 10xð1� x2Þ; ð57Þ

and boundary conditions

uðt; 0Þ ¼ uðt; 1Þ ¼ 0 ð58Þ

for 06 x6 1 and 06 t6 1.

The homogenized solution is computed from Eq. (56), where the oscillating coefficient ae is replaced by

its weakly convergent limit (see (8))

a ¼
Z 1

0

1

1:1þ sin 2py
dy

� ��1

: ð59Þ

For this problem, the homogenized and the reference solution, computed on a grid with Dx ¼ 1=2000, are
very close for the chosen e: The error between both solutions is err2 ¼ 8:7� 10�5 and err1 ¼ 2:4� 10�6 for

the weighted Euclidean and maximum norm, respectively. For the computation of the flux, we proceed as

explained in Section 2.2. We see in Fig. 2 that after a short transient P ðtÞ, the microscopic flux is quasi-

stationary. We choose the value h ¼ 3E) 5 for the micro-time step.

The coarse solution is evolved on a spatial grid of nb interior points, thus Dx ¼ 1=ðnbþ 1Þ. For the e-cell
computation on nbþ 1 domains of length e ¼ 0:01, we solve the original equations with a mesh of size

Dn ¼ e=nres. The main cost in the FD-HMM is the solution of the ðnbþ 1Þ cell problems and the number of
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equations for it is ðnbþ 1Þ � ðnresþ 1Þ. Notice that it is independent of e. For example if nb ¼ 9 and

nres ¼ 20, it leads to 210 equations, while for the resolution of the original equations by standard FD

methods and with the same fine resolution as used in the micro-solver, it would need 1999 equations.

The time evolution of the solution (from t ¼ 0 to t ¼ 1) is done in 1000 steps, so that the coarse time step

is given by Dt ¼ 1� 10�3. We plot in Fig. 3 (left picture) the results at t ¼ 1 for the reference solution and

for the solution of the FD-HMM. We see that the FD-HMM is able to approximate the exact solution on a

coarse grid. The computational cost is much lower than a traditional method which would require the full

resolution of the e-scale. In Fig. 3 (right picture) we plot a similar computation but for a refined coarse
mesh with 19 interior points. We see that the error decreases.

We now show the results of several experience with this simple equation, useful for the understanding of

the algorithm and the accuracy of the FD-HMM which was discussed in Section 2.3.

First if we take smaller time step for a given mesh the method converge to the underlying ordinary

differential equations (quite slowly due to the first order of the method). The error with the homogenized

(or the reference) solution does not decrease (see Table 1). Notice that for a higher Runge–Kutta method, it

would converge much faster to the underlying ODE.

Next we refine the coarse mesh. Until the error introduced by the spatial discretization is larger than the
error introduced by the reconstruction and the flux, the error decreases. It later reaches a point where
Fig. 3. Exact and FD-HMM solutions for ut ¼ ðd=dxÞðaeðxÞðd=dxÞueÞ.

Table 1

Error between homogenized solution and FD-HMM for decreasing time step Dt ¼ 1=nstep, nb ¼ 9 coarse points (spatial discretiza-

tion), e ¼ 0:01

nstep Error (Euclidean) Error (maximum)

1000 2:3372� 10�2 6:5479� 10�4

5000 3:1686� 10�2 8:8773� 10�4

10,000 3:2728� 10�2 9:1690� 10�4

20,000 3:3248� 10�2 9:3149� 10�4

30,000 3:3422� 10�2 9:3635� 10�4
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further refinement gives no amelioration (see Table 2). Here we took nstep ¼ 30,000 (due to the first order

of the RK-method) in order that the time error does not interfere with the other errors.

We finally decrease e to 0.005 and we see in Table 3 that the error keeps decreasing for finer mesh size

than before. As explained in Section 2.2, for time independent oscillating coefficients, the micro-solver can

be applied only once.

Time dependent coefficient. We take the same example as before but with add a time dependency in the

oscillating coefficients

aeðt; xÞ ¼ ð1:1þ sinð2px=eÞÞ � ðt þ 0:1Þ; ð60Þ

where e ¼ 10�2 as before. In this case, the homogenization is not straightforward (in particular the coef-

ficient given by (59) has to be computed at each time step). The FD-HMM applies without modification.

The unique difference is that the relaxation time can depend on t and should be for efficiency computed

several times during the integration process. For this example it is between 2� 10�4 (in the beginning) and

3� 10�5 (at the end). We show in Table 4 the obtained results. The macro time step is Dt ¼ 1� 10�3 for

N ¼ 1; . . . ; 29.
Small scale recovery. As explained in Section 2.2, to have a solution on the whole spatial domain, we do a

periodic extension of the solution computed in the e- cell. We choose the above problem with time inde-
pendent coefficient. In Table 5 we give the error of such extended solutions on a fine grid with Dx ¼ 1=2000,
Table 2

Error between homogenized solution and FD-HMM for increasing number of coarse steps (spatial discretization), e ¼ 0:01

nb Coarse Error (Euclidean) Error (maximum)

9 3:3422� 10�2 9:3635� 10�4

19 5:1147� 10�3 1:4329� 10�4

29 1:1901� 10�3 3:3342� 10�5

39 1:8688� 10�3 5:2355� 10�5

49 2:7043� 10�3 7:5763� 10�5

Table 4

Error between the exact and the FD-HMM solutions for time dependent oscillating coefficients and various number of coarse points

(spatial discretization)

nb Coarse Error (Euclidean) Error (maximum)

9 1:9281� 10�2 3:2979� 10�3

19 2:4209� 10�3 4:1409� 10�4

29 7:7147� 10�5 1:3196� 10�5

Table 3

Error between homogenized solution and FD-HMM for increasing number of coarse steps (spatial discretization), e ¼ 0:005

nb Coarse Error (Euclidean) Error (maximum)

9 3:6075� 10�2 1:0107� 10�4

19 7:7111� 10�3 2:1604� 10�4

29 3:7964� 10�3 1:0637� 10�4

39 7:1352� 10�4 1:9999� 10�5

49 2:0955� 10�4 3:4559� 10�6



Table 5

Error between the solution with small scale recovering and a reference solution

Small scale (coarse) Error (Euclidean) Error (maximum)

1999 (9) 3:6706� 10�2 9:6945� 10�4

1999 (19) 1:8949� 10�2 2:2396� 10�4
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the spatial discretization of the microscopic solver. The error is computed on the fine grid (compared with a

reference solution). We did the reconstruction starting with a coarse grid with N ¼ 9 and N ¼ 19 points.

3.3. Example 2: rough non-periodic (random) coefficient

We apply next the FD-HMM method at a problem with a rough (random) coefficient aeðxÞ known to

have an e-correlation. This e will be the e-cell for the application of the finite difference method (see Section

2.2). This indicates how the method behaves for random correlated signal.
We briefly explain how we construct such an example. We first take an uniformly random distributed

signal sðxÞ in ½0:1; 1:1�. We next discretize the interval 06 x6 1 in N equidistant point xi. We define a

‘‘kernel’’ geðxÞ such that

geð0Þ ¼ 1=e; geðxÞ ¼ 0 if x 62 ð�e=2; e=2Þ and

Z e=2

�e=2
geðxÞ dx ¼ 1: ð61Þ

For each point of the discretization xi we define

aeðxiÞ ¼ ðg� � sÞðxiÞ ¼
Z e=2

�e=2
geðxi � zÞsðzÞ dz: ð62Þ

We chose

geðxÞ ¼ 1

e
ð1� sin 2px=eÞ:

Finally, we take the same Eq. (56) as in the previous example and replace the oscillating coefficient by aeðxÞ
constructed above. The correlation was first chosen such that e ¼ 10�2.

We plotted in Fig. 5 (left) the obtained signal. The relaxation time as shown in Fig. 4 is close to 3� 10�5.
In Fig. 5 (right) we plotted, the reference and the FD-HMM solutions for a mesh with nb ¼ 29 coarse

points and in Table 6 we compare the error for mesh refinement (with nstep ¼ 30,000).

Remark 5. Notice that we consider the exact solution as a deterministic problem with rough coefficient
generated ‘‘randomly’’ as explained above. We thus do not consider several realization, since the fine scale

signal ae is fixed. We generate this rough fine scale signal ae on a fine grid with Dx ¼ 1=2000 and we used the

full resolution of the signal for the reference solution.

Dependence of the error on the size of the micro-cell. Unlike the case of periodic coefficients it is likely that

for rough coefficients with correlation, increasing the size of the cell for the microscopic solver, will improve

the result. In the following example, we took the same equation and coefficients as previously except the

fact that we decrease the value of e to e ¼ 10�3. For a given number of coarse point, we increase the number

of the cells for the microscopic solver between each coarse step.

We see in Tables 7 and 8 that choosing more e-cell decreases the error. Notice that even with larger cells,

FD-HMM is still more efficient for solving this problem than full scale resolution. For example choosing 5



Fig. 5. Random correlated signal (left) and error between exact and FD-HMM solutions for 29 coarse points (right).

Table 6

Error between the exact and the FD-HMM solutions for increasing number of coarse points (spatial discretization)

Coarse step Error (Euclidean) Error (maximum)

9 1:0771� 10�1 5:7194� 10�4

19 1:3617� 10�1 7:5779� 10�4

29 4:0441� 10�2 2:0062� 10�4

39 3:6209� 10�2 1:8660� 10�4

49 1:2189� 10�1 6:6998� 10�4

Fig. 4. The average flux �ppeðtÞ ¼
Ps

i¼1 a
eðxiÞðd=dxÞ�uueðt; xiÞ for various e-cells.

36 A. Abdulle, W. E / Journal of Computational Physics 191 (2003) 18–39



Table 7

Error between the exact and the FD-HMM solutions for increasing number of cells, 9 coarse points

nb Cells Error (Euclidean) Error (maximum) nb Cells Error (Euclidean) Error (maximum)

1 1:5661� 10�1 8:5611� 10�4 15 1:7133� 10�2 1:3260� 10�4

5 3:5796� 10�2 1:9935� 10�4 20 1:4452� 10�2 1:0827� 10�4

10 1:7592� 10�2 1:1278� 10�4

Table 8

Error between the exact and the FD-HMM solutions for increasing number of cells, 19 coarse points

nb Cells Error (Euclidean) Error (maximum) nb Cells Error (Euclidean) Error (maximum)

1 5:8031� 10�1 4:2010� 10�4 15 1:1218� 10�2 9:6756� 10�5

5 3:1749� 10�2 1:5329� 10�4 20 5:8617� 10�3 4:3328� 10�5

10 2:8356� 10�2 1:4710� 10�4
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e-cell, for nb ¼ 9 and for Dn ¼ e=20 (chosen as to have a good resolution of the small oscillation for the

microscopic solver) we have to solve 1050 equations for the cell problems (the main cost of the FD-HMM),

while the resolution by standard finite difference method, with e ¼ 10�3, would need 19,999) equations for

the same resolution as used for the microscopic solver.
To choose in an automatic way the number of cells which should be taken, we can at selected time step

apply the FD-HMM method with different number of e-cells. The difference of the solutions (which should

tend to zero) gives an estimation of the appropriate (number of) e-cell.
As in the previous periodic example, the FD-HMM can be applied to problems with rough non-periodic

coefficients with time dependency.

3.4. Example 5: two dimensions

We consider the problem (1) in two dimensions with an oscillating coefficients given by

aeðx1; x2Þ ¼ a � b
�

þ sin
2pðx1 þ x2Þ

e

�
� I ; ð63Þ

where I is the identity matrix. The coefficient ae has oscillations which are not in one of the two spatial

directions.

We chose a ¼ 0:5, b ¼ 1:1 and e ¼ 0:04, Dirichlet boundary conditions and initial condition given by

uð0; x1; x2Þ ¼ 10x1ð1� x21Þx2ð1� x22Þ: ð64Þ

We plot in Fig. 6 (left) a reference solution (computed on a grid of 1999� 1999 but displayed on a much

coarser grid).

The coarse solution is evolved on a spatial grid of 9� 9 interior points, thus Dx ¼ 1=10. For the cell

computation on 180 domains of measure e2 with e ¼ 0:04, we solve the original equations with a mesh of

size Dn ¼ e=20. A similar resolution for the original equation with standard finite difference, leads to a mesh
of 499� 499 interior points.

The time evolution of the solution (from t ¼ 0 to t ¼ 0:1) is done in 1000 steps. We plot in Fig. 3 (right)

the result at t ¼ 0:1 for the FD-HMM.

Finally, we show in Fig. 7 how badly the solution is destroyed if we do not resolve the scale (we solve the

original equation with 9� 9 interior points).



Fig. 6. 2D oscillating parabolic PDEs, reference (left) and FD-HMM solutions (right).

Fig. 7. 2D oscillating parabolic PDEs, resolution with 9� 9 coarse points (spatial discretization) without using FD-HMM.
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2d Rough non-periodic coefficients. We take the same problem as before, but with aeðx; tÞ given by

ðt þ 0:1Þ a1ðxÞ 0

0 a2ðxÞ

� �
;

where a1ðxÞ and a2ðxÞ are rough non-periodic (random) correlated coefficients constructed as in (62). The
coefficients are different but have both the same correlation e ¼ 10�2.

The coarse solution is evolved on a spatial grid of 9� 9 interior points, as in the previous example. For

the cell computation on 180 domains of length e2 with e ¼ 0:01 (the correlation length), we solve the ori-
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ginal equations with a mesh of size Dn ¼ e=20. A similar resolution for the original equation with standard

finite difference, leads to a mesh of 1999� 1999 interior points. The time evolution of the solution (from

t ¼ 0 to t ¼ 0:1) is done in 1000 steps. We obtain for the error err2 ¼ 5:56� 10�1 and err1 ¼ 3:06� 10�1

for the weighted Euclidean and maximum norm, respectively.
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